cicyt UNIZAR
Full-text links:

Download:

Current browse context:

math.NT

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

Mathematics > Number Theory

Title: The arithmetic derivative and Leibniz-additive functions

Abstract: An arithmetic function $f$ is Leibniz-additive if there is a completely multiplicative function $h_f$, i.e., $h_f(1)=1$ and $h_f(mn)=h_f(m)h_f(n)$ for all positive integers $m$ and $n$, satisfying $$ f(mn)=f(m)h_f(n)+f(n)h_f(m) $$ for all positive integers $m$ and $n$. A motivation for the present study is the fact that Leibniz-additive functions are generalizations of the arithmetic derivative $D$; namely, $D$ is Leibniz-additive with $h_D(n)=n$. In this paper, we study the basic properties of Leibniz-additive functions and, among other things, show that a Leibniz-additive function $f$ is totally determined by the values of $f$ and $h_f$ at primes. We also consider properties of Leibniz-additive functions with respect to the usual product, composition and Dirichlet convolution of arithmetic functions.
Subjects: Number Theory (math.NT)
MSC classes: 11A25
Cite as: arXiv:1803.06849 [math.NT]
  (or arXiv:1803.06849v1 [math.NT] for this version)

Submission history

From: Pentti Haukkanen [view email]
[v1] Mon, 19 Mar 2018 09:51:32 GMT (6kb)