cicyt UNIZAR
Full-text links:

Download:

Current browse context:

cs.CV

Change to browse by:

cs

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

Computer Science > Computer Vision and Pattern Recognition

Title: Robust event-stream pattern tracking based on correlative filter

Abstract: Object tracking based on retina-inspired and event-based dynamic vision sensor (DVS) is challenging for the noise events, rapid change of event-stream shape, chaos of complex background textures, and occlusion. To address these challenges, this paper presents a robust event-stream pattern tracking method based on correlative filter mechanism. In the proposed method, rate coding is used to encode the event-stream object in each segment. Feature representations from hierarchical convolutional layers of a deep convolutional neural network (CNN) are used to represent the appearance of the rate encoded event-stream object. The results prove that our method not only achieves good tracking performance in many complicated scenes with noise events, complex background textures, occlusion, and intersected trajectories, but also is robust to variable scale, variable pose, and non-rigid deformations. In addition, this correlative filter based event-stream tracking has the advantage of high speed. The proposed approach will promote the potential applications of these event-based vision sensors in self-driving, robots and many other high-speed scenes.
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:1803.06490 [cs.CV]
  (or arXiv:1803.06490v1 [cs.CV] for this version)

Submission history

From: Hongmin Li [view email]
[v1] Sat, 17 Mar 2018 11:15:32 GMT (1954kb)