cicyt UNIZAR
Full-text links:

Download:

Current browse context:

math.DG

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

Mathematics > Differential Geometry

Title: Singular genuine rigidity

Abstract: We extend the concept of genuine rigidity of submanifolds by allowing mild singularities, mainly to obtain new global rigidity results and unify the known ones. As one of the consequences, we simultaneously extend and unify Sacksteder and Dajczer-Gromoll theorems by showing that any compact $n$-dimensional submanifold of ${\mathbb R}^{n+p}$ is singularly genuinely rigid in ${\mathbb R}^{n+q}$, for any $q < \min\{5,n\} - p$. Unexpectedly, the singular theory becomes much simpler and natural than the regular one, even though all technical codimension assumptions, needed in the regular case, are removed.
Comments: 17 pages
Subjects: Differential Geometry (math.DG)
MSC classes: 53C40, 53B25
Cite as: arXiv:1803.06395 [math.DG]
  (or arXiv:1803.06395v1 [math.DG] for this version)

Submission history

From: Luis A. Florit [view email]
[v1] Fri, 16 Mar 2018 20:45:13 GMT (21kb)